
Arazzo Specification 1.0 - Cheat Sheet

Document Structure
An Arazzo Document is a JSON or YAML file containing the
following root elements:

arazzo 1.0.1 # The arazzo spec version
info: {} # Workflow & document info, summary, ...
sourceDescriptions: {} # APIs / workflows available for use
workflows: {} # List of workflows to achieve use-cases
components: {} # Reusable objects (referenceable)

General Information
info:
 title: Your Epic Workflow
 summary: Helps you achieve Epic outcomes
 description: Our Epic Workflow allows for ...
 version: 1.5.10

Source Descriptions
Defines the APIs and Workflows (OpenAPI/Arazzo) referenced by
workflows authored in the current document (acts like 'imports'
and/or 'namespaces' in programming languages).

sourceDescriptions:
 name: exampleAPI
 url: https://example.com/apis/someapi.openapi.json
 type: openapi
 name: AuthFlows
 url: https://example.com/apis/authflow.arazzo.json
 type: arazzo

Reusable Components
Reusable parameters, inputs, actions across workflows and steps.

components:
 parameters:
 apiKey:
 name: apiKey
 in: header
 value: $inputs.apiKey

Workflows
Describes the steps to be taken across one or more APIs to achieve
an objective.

workflows:
 workflowId: EpicWorkflowId
 summary: Helps you achieve epic outcomes
 description: Achieve it by combining API calls and ...
 inputs: {} # The inputs needed to start (JSON Schema)
 parameters: [] # Common params across all steps
 successActions: [] # Common actions across each successful step
 failureActions: [] # Common actions across each failed step
 steps: [] # The steps needed to achieve the workflow
 dependsOn: [] # Don't run this workflow until others complete
 outputs: [] # What to return at the end of the workflow

Steps
Each step represents a call to an API operation or to another
workflow (e.g., workflow chaining).

steps:
 stepId: epicStepId
 description: This step helps delivery epic outcomes by...
 operationId: $sourceDescriptions.exampleApi.getEpics
 (operationPath): # a JSON Pointer to an operation if no id exists
 (workflowId): # a reference to a workflow rather than an API
 parameters: [] # map params into API operation or workflows
 successCriteria: [] # what determines success of a step
 requestBody: {} # how to send a request body payload to API
 onSuccess: [] # things to do once success (log, branch, ...)
 onFailure: [] # things to do upon failure (retry, end, goto)
 outputs: [] # what to make available for nexts workflow
 steps

Outputs
Dynamic named values from steps and workflows.

outputs:
 someName: $steps.step1.outputs.output1
 statusCode: $statusCode

Success Criteria
A list of assertions to determine the success of the step.
All must be satisfied for the step to be deemed
successful.

successCriteria:
 # assertions to determine step was successful
 condition: $statusCode == 200
 condition: $[?length(@.stuff) > 0]
 context: $response.body
 type: jsonpath

Branching & Conditionals
Success and Failure actions can control conditional
navigation between steps or retry logic.

onFailure:
 name: retryGet
 type: retry # other types ‘goto’, ‘end’, ...
 retryAfter: 1
 retryLimit: 3
 criteria:
 condition: $statusCode == 503

Runtime Expressions
Success and Failure actions can control conditional
navigation between steps and/or retry logic.

$inputs.userId
$steps.getPet.outputs.petId
$response.body#/status
$atatusCode ...

Referencing or Chaining Workflows
Use ‘workflowId’ in a step to call another workflow.

workflowId: main-workflow
steps:
 stepId: sub-flow
 workflowId: another-workflow-runs-here
 parameters: [...]

“A Tapestry for API Workflows”

Scan here for a digital copy!

