%: Arazzo Specification 1.0 - Cheat Sheet

“A Tapestry for APl Workflows”

c/A Jentic

Document Structure

An Arazzo Document is a JSON or YAML file containing the
following root elements:

arazzo 1.0.1 # The arazzo spec version

info # Workflow & document info, summary, ...
sourceDescriptions # APls / workflows available for use
workflows # List of workflows to achieve use-cases
components # Reusable objects (referenceable)

General Information

info
title: Your Epic Workflow
summary: Helps you achieve Epic outcomes
description: Our Epic Workflow allows for ...
version: 1.5.10

Success Criteria

A list of assertions to determine the success of the step.
All must be satisfied for the step to be deemed
successful.

successCriteria
assertions to determine step was successful
condition: SstatusCode == 200
condition: S[?length(@.stuff) > 0]
context: Sresponse.body
type: jsonpath

Source Descriptions

Defines the APIs and Workflows (OpenAPI/Arazzo) referenced by
workflows authored in the current document (acts like 'imports’
and/or 'namespaces' in programming languages).

sourceDescriptions
name: exampleAPI
url: https://example.com/apis/someapi.openapi.json
type: openapi
name: AuthFlows
url: https://example.com/apis/authflow.arazzo.json
type: arazzo

Branching & Conditionals

Success and Failure actions can control conditional
navigation between steps or retry logic.

onFailure
name: retryGet
type: retry # other types ‘goto’, ‘end’, ...
retryAfter
retryLimit
criteria
condition: SstatusCode == 503

Workflows

Describes the steps to be taken across one or more APIs to achieve
an objective.

workflows
workflowld: EpicWorkflowld
summary: Helps you achieve epic outcomes
description: Achieve it by combining API calls and ...
inputs # The inputs needed to start (JSON Schema)
parameters # Common params across all steps
successActions: [| # Common actions across each successful step
failureActions # Common actions across each failed step
steps # The steps needed to achieve the workflow

Reusable Components

Reusable parameters, inputs, actions across workflows and steps.

components
parameters
apiKey
name: apiKey
in: header
value: Sinputs.apiKey

Runtime Expressions

Success and Failure actions can control conditional
navigation between steps and/or retry logic.

Sinputs.userld
Ssteps.getPet.outputs.petld
Sresponse.body#/status
SatatusCode

dependsOn # Don't run this workflow until others complete
outputs # What to return at the end of the workflow
Steps

Each step represents a call to an APl operation or to another
workflow (e.g., workflow chaining).

steps
stepld: epicStepld
description: This step helps delivery epic outcomes by...
operationld: SsourceDescriptions.exampleApi.getEpics
(operationPath): # a JSON Pointer to an operation if no id exists
(workflowld) # a reference to a workflow rather than an API

Referencing or Chaining Workflows
Use ‘workflowld’ in a step to call another workflow.

workflowld: main-workflow

steps
stepld: sub-flow
workflowld: another-workflow-runs-here
parameters

parameters # map params into API operation or workflows
successCriteria: [] # what determines success of a step
requestBody # how to send a request body payload to API
onSuccess # things to do once success (log, branch, ...)
onFailure # things to do upon failure (retry, end, goto)
outputs # what to make available for nexts workflow
steps
Outputs

Dynamic named values from steps and workflows.

outputs
someName: Ssteps.stepl.outputs.outputl
statusCode: SstatusCode

Scan here for a digital copy!

